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1 Departamento de Matemática e Estat́ıstica, Universidade Estadual de Ponta Grossa, 84010-790, Ponta Grossa, PR, Brazil
(e-mail: latrevis@uepg.br)

2 Departamento de F́ısica, Instituto Tecnológico de Aeronáutica, CTA, 12228-900, São José dos Campos, SP, Brazil
(e-mail: tobias@fis.ita.cta.br)
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Abstract. The strangeness content of the nucleon is determined from a statistical model using confined
quark levels, and is shown to have a good agreement with the corresponding values extracted from ex-
perimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential
(scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the
New Muon Collaboration (NMC), is well reproduced, we also obtain the difference between the structure
functions of the proton and neutron, and the corresponding sea quark contributions.

1 Introduction

In the last five years, a lot of very precise data on the
parton distribution of the nucleon has become available;
this data is summarized in [1]. Particularly, the E866 Col-
laboration [2] has extended the Bjorken-x range of mea-
surement for the asymmetry in Drell–Yan production in
pp and pn to 0.03 < x < 0.35. Such asymmetry gives di-
rect information about the ū − d̄ distribution of the sea
quark densities. The first indication of sea flavor asym-
metry came from the violation of the Gottfried sum rule
(GSR) [3] observed by the New Muon Collaboration
(NMC) in 1991, which was more precisely determined in
1994 by the same group [4], at Q2 =4 GeV2. After sum-
ming the contributions from the measured and unmea-
sured regions and adding the errors quadratically, they
obtain for the GSR a value given by1

SG ≡
∫ 1

0

dx
x

(Fµp
2 (x) − Fµn

2 (x)) = 0.235 ± 0.026. (1)

In order to have no violation of the GSR (in case of a
symmetric sea) one should obtain a value of 1/3 for the
above integral. Recently, the flavor asymmetry was also
determined from semi-inclusive deep-inelastic scattering

1 A new global analysis, given in [1], also estimates SG ≈ 0.27
at Q2 =4 GeV2. For a recent review of experimental results and
theoretical approaches, see also [5]. In our model, we assume
SG = 0.24 for the experimental result. Most of the known
experimental data and analyses for the violation of GSR are
within a variation of about 30% of the violation given by this
value

by the HERMES Collaboration [6], in the kinematical re-
gion 0.02 < x < 0.3 and 1 < Q2 < 10 GeV2.

Several theoretical models have been proposed for the
study of the quark distributions inside the nucleon [5,7],
more specifically, the study of the deviation from the GSR.
A recent investigation of invariant cross sections for pro-
duction of K∗− and K∗0, in the fragmentation region of
the proton for p–p and γ–p reactions also has given a di-
rect and unambiguous probe to the symmetry breaking
of the nucleon sea [8], in agreement with NA51 measure-
ments [9]. As shown in [8] the SU(2) asymmetry can be
well represented by a simple function given by

ū(x)
d̄(x)

= (1 − x)3.6. (2)

In a quark description for the proton, the Pauli block-
ing model [10] partially explains the asymmetry as due to
the fact that uū pair creations are more suppressed than
dd̄ (because there are more valence quarks u than d in
the proton). The relevance of this effect in the GSR vio-
lation has been recently analyzed in [11]. Mesonic models
have also been used by several authors [12] to explain the
NMC results. Pionic contributions to ū − d̄, for example,
are considered in [13].

The suggested relevance of the Pauli principle to de-
scribe the parton content of the nucleon was considered in
the development of quantum statistical models for the par-
ton distribution. In such models, the quarks follow Fermi–
Dirac and the gluons Bose–Einstein statistics [15–19]. The
approaches used in [15–18] must be distinguished from
the one given in [19], despite the common reference to
quantum statistics. The statistical distributions assumed
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in [19] are directly given in terms of the momentum frac-
tion x (a continuum variable), with a weight function f(x)
that carries the usual parametrization for the parton dis-
tribution when the statistical effects are negligible. In the
models considered in [15–18] the parametrization in gen-
eral is done via the single parton interaction in the hadron
and by thermodynamical observables, such as the chemi-
cal potentials, temperature, and energies. Such “thermal
models” enable one to obtain qualitative results at low
Q2. The hadrons are described in these models as a con-
fined gas of quarks and gluons at a finite temperature.
Mac and Ugaz [16] and Cleymans and Thews [15] have
used a Fermi–Dirac distribution with continuum levels for
the energies.

Our approach was mainly inspired by the models used
in [15] and [16]. However, instead of assuming continuum
levels for the quark energies, we consider the Dirac con-
fining potential given in [20] (described in Sect. 2) to gen-
erate the single-particle spectrum. In the model, we have
a quark gas obeying Fermi statistics. The number of d
quarks, which is greater than the number of u quarks
in the sea of the proton, at a finite temperature T , is
parametrized in the model by the different chemical poten-
tials, which are fixed by the normalization of the number
of valence quarks inside the hadron. This will result effec-
tively in the Pauli blocking effect. For each flavor q =u,
d, and s, we have the corresponding strengths λq of the
confining potential and the current quark masses mq as
parameters, which will be adjusted by the hadron masses.
In our model we take λu = λd and mu = md = 0.

In Sect. 3, we detailed our statistical model, where
we assume the GSR violation and the normalizations of
the valence quarks inside the nucleon to adjust the main
parameters of the model, given by the temperature and
chemical potentials. For the antiparticles in the sea to be
considered, the chemical potentials for the up and down
quarks were introduced to normalize the number of va-
lence quarks in a given sum rule [22]. In such an approach,
the nucleon consists of the sea quarks and three valence
quarks. The contribution of gluon fields is expected to be
small [16,17].

One should observe that the effective potential does
not contain all the interactions of the quarks in the
hadrons. There are short-range effects, like small-size in-
stanton fluctuations [21] and gluon exchange contribu-
tions. The instanton effects give the main contribution to
the spin–spin splitting between hadronic multiplets. Thus
the pseudoscalar octet loses about one third of its mass as
a result of this interaction. In the baryons, the interaction
gives a substantial attraction in channels in which there
is a scalar diquark, and it determines, in particular, the
nucleon (N)–∆ splitting. Because of such an effect, we use
the same λ for both ∆ and nucleon. For the s quark, con-
sidering the current mass as 150 MeV, the corresponding
λs is adjusted such that the effective mass is about one
third of the mass of Ω at zero temperature. The instanton
contribution and temperature effects are further discussed
in Sect. 4.

Thus, in our statistical quark model we have not too
much freedom, as all the parameters are constrained by
the observables: the strengths of the Dirac confining po-
tential and current quark masses, adjusted by hadron
masses; the two chemical potentials (µu, µd), which will
be adjusted by the normalization of the nucleon to the
number of valence quarks (u and d); and the temperature
parameter, which will be mainly adjusted by the Gottfried
sum rule violation. All these parameters are adjusted in
a consistent way, and a reasonable result for the differ-
ence of the structure functions of proton and neutron is
reached. Another important experimental result, related
to the sea-quark distribution inside the nucleon, is the
strangeness content. The strangeness content of the nu-
cleon can be measured by two observables given in [14].
It is also important to describe the strangeness described
by a quark model, so as to verify the consistency of the
model in describing the hadron in terms of its contents. We
show that our model gives a consistent result for the cor-
responding observables, which are not amenable to model
parametrization once the GSR violation and the normal-
izations of the valence quarks inside the nucleon are fixed.
As is shown, the two observables related to the strangeness
are in good qualitative agreement with the corresponding
experimental observables.

The paper is organized as follows. In Sect. 2, we present
the Dirac confining potential model and its parametriza-
tion. In Sect. 3, a description of our statistical quark model
is given. In Sect. 4, we analyze the temperature and in-
stanton effects, in order to obtain our main results, the
strangeness and the structure functions. Finally, our main
conclusions are summarized in Sect. 5.

2 Dirac equation with confining potential

To generate the energy levels of the confined quarks in
our statistical model, we use a linear confining (vector
plus scalar) potential, given by [20]

V (r) =
1
2
(1 + β)λr, (3)

where β is the fourth usual 4×4 Dirac matrix. The strength
λ of this potential is the same for the quarks u and d, ad-
justed to obtain the observed mass of the ∆(1232) isobar
at zero temperature. For the strange quark, λ is adjusted
in the same way to obtain the mass of Ω(1676). As was
briefly explained in the introduction, we adjust λ to the
∆ mass instead of the nucleon mass, considering the in-
stanton contributions in the model as given in [21]. The
instanton contribution is negative for the nucleon mass
and zero for the ∆ mass, suggesting that we should adjust
the model parameters to fit the ∆(1232) isobar and latter
consider the instanton contribution to obtain the nucleon
mass.

The specific choice of (3) in the coupled Dirac equation
leads to an equation similar to the Schrödinger equation,
such that one can easily solve it by using the conventional
methods of nonrelativistic dynamics. Such a choice also
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has the advantage that it avoids an old problem that oc-
curs in confining theories when the vector part of the po-
tential is dominant, known as Klein’s paradox [23]. This
paradox corresponds to a possibility of tunneling even
when one has an infinite potential.

The Dirac equation to be solved is given by[
~α · ~p+ βm+

1
2
(1 + β)λr

]
ψi(~r) = εiψi(~r), (4)

where ~α and β are the usual 4 × 4 Dirac matrices, which
can be written in terms of the 2 × 2 Pauli matrices. With
ψi(~r) given by

ψi(~r) =
(

1
~σ · ~p/(m+ εi)

)
ϕi(~r), (5)

the final coupled equations will be reduced to a single
second order differential equation:[

~p2 + (m+ εi)(m+ λr − εi)
]
ϕi = 0. (6)

This equation is solved numerically for the radial part,
after partial wave expansion. In case of the s wave (l = 0),
where jp = (1/2)+, the radial part of ϕi is proportional
to the Airy function (Ai):

ϕi(r) =

√
Ki

4π
Ai(Kir + ai)

r [dAi(x)/dx] |x=ai

. (7)

ai is the corresponding ith root of Ai(x), Ki ≡
3
√
λ(m+ εi), m is the current quark mass, and εi the en-

ergy levels, which are given by

εi = m− λ

Ki
ai (8)

For the u and d quarks, m = 0, the energies are given by

εi =
√
λ(−ai)

3
4 . (9)

We have solved (4) for the quarks u, d, and s, using
for the current quark masses the values mu = md = 0 and
ms = 150 MeV. As explained above, we took the same λ
for the quarks u and d, such that the ground-state energy
of the three-quark system (u and/or d) is equal to the mass
of the ∆(1232) isobar. In the same way, for the s quark the
λ is adjusted to obtain Ω(1676). Thus the corresponding
ground-state energies are adjusted such that

ε0 ' M∆

3
and ε

(s)
0 ' MΩ

3
. (10)

The numerical values used for λ, and the corresponding
ground-state energies obtained, are given in Table 1.

The particles ∆ and Ω were considered when the pa-
rameters of the potential were chosen, because the instan-
ton contribution is zero for such particles, and is negative
for the nucleon [21]. There is no instanton contribution for
the spin 3/2 particles, ∆(1232) and Ω(1676). Therefore,
we have not tried to fix the nucleon mass, but instead

Table 1. Numerical parameters used for the three quark fla-
vors u, d and s: the strengths of the interaction (λ), the current
masses (m), and the corresponding ground-state energies (ε).
All the quantities are given in MeV

u d s

λ 239 239 312
m 0 0 150
ε 410 410 558

we have obtained it by calculating the corresponding in-
stanton effect, using the linear potential given in (3), in
the same way as in [21] (through integration of the corre-
sponding Lagrangian density).

At zero temperature, the nucleon mass and the instan-
ton contribution (EI) are given by

MN(0) = M∆(0) + EI = (1232 − 267) MeV
= 965 MeV. (11)

This will adjust the static properties of the confining po-
tential model. The higher energy levels for the quarks,
obtained from the linear potential described above, will
contribute to the thermal masses of the nucleon as de-
scribed in the next section. We have determined up to 46
energy levels, and observe that at least the first 30 levels
are effective in order to obtain a reasonable accuracy in
our model results. Such a number results from the temper-
ature which is necessary to reproduce the GSR violation;
we describe this in the next section.

3 Statistical quark model

In this section, we describe our statistical quark model
and obtain the structure function of the nucleon. The en-
ergy levels for the quarks, εi, are obtained through the
relativistic linear confining quark model [20] presented in
the preceding section. In the model, the nucleon consists
of three valence quarks and the sea quarks, and neglects
the contribution of gluon fields, which is expected to be
small [16,17]. In order that antiquarks in the nucleon sea
be considered, two nonzero chemical potentials (µu and
µd) were introduced as parameters to normalize the num-
ber of valence quarks u and d [22]. The temperature (T )
is another parameter in the model, which will be used to
adjust the violation of the GSR.

The probability density for a system with energy levels
εi and temperature T is given by:

ρα(~r) =
∑

i

giψ
†
i (~r)ψi(~r)

1
1 + exp( εi−µα

T )
, (12)

where α is the flavor number (=u,d,s,ū, d̄, s̄), gi is the level
degeneracy, µα (= −µᾱ) is the chemical potential, and
|ψi(~r)|2 is the density probability for each state, normal-
ized to unity: ∫

ψ†
i (~r)ψi(~r)d3r = 1. (13)
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In the present work we consider only the lighter quarks,
u, d, and s. The corresponding current quark masses, as
assumed in Sect. 2, are mu = md = 0 and ms = 150 MeV.
As the strength parameters λu and λd, in the confining
potential model, were also assumed to be equal and dif-
ferent from λs, the energies for the u and d quarks will be
the same, differing from the s quarks.

With the above, we obtain the following normalization
for the proton:∫

[ρα(~r) − ρ̄α(~r)]d3r

=
∑

i

gi

[
1

1 + exp( εi−µα

T )
− 1

1 + exp( εi+µα

T )

]

=
{

1 for α = d
2 for α = u (14)

where µu ≡ µ
(proton)
u and µd ≡ µ

(proton)
d . The isospin sym-

metry implies that, for the neutron we have µ(neutron)
u =

µd and µ(neutron)
d = µu.

The units are such that the Boltzmann constants k, ~,
and c are all set to 1. The thermal mass of the nucleon,
MN(T ), is given in terms of the masses of the valence
quarks, Mu(T ) and Md(T ):

MN(T ) = Mp(T ) = Mn(T ) = 2Mu(T ) +Md(T ), (15)

where

2Mu(T ) ≡ 2M (proton)
u (T ) = 2M (neutron)

d (T ) (16)

=
∑

i

gi

[
εi

1 + exp( εi−µu
T )

+
εi

1 + exp( εi+µu
T )

]
,

Md(T ) ≡ M
(proton)
d (T ) = M (neutron)

u (T ) (17)

=
∑

i

gi

[
εi

1 + exp( εi−µd
T )

+
εi

1 + exp( εi+µd
T )

]
.

In order to calculate the structure function for the nu-
cleon, it is convenient to write the wave function in mo-
mentum space by taking the Fourier transform:

Φi(~p) =
1

(2π)3/2

∫
exp(−i~p · ~r)ψi(~r)d3r. (18)

Using the null plane variables,

p+ = xP+ , P+ = MN(T ) ,

pz = p+ − εi = MN(T )
(
x− εi

MN(T )

)
, (19)

where x is the momentum fraction of the nucleon carried
by the quark, we can redefine the above wave function as

Φi(~p) ≡ Φi(x, ~p⊥). (20)

By using the above (12)–(20) for each quark flavor α,
we obtain the following structure function:

fα(x) =
∑

i

∫ ∣∣∣∣Φi

(
MN(T )

(
x− εi

MN(T )

)
, ~p⊥

)∣∣∣∣
2

× d2p⊥

1 + exp
(
εi − µα

T

) , (21)

which describes the probability that a quark with flavor
α has a fraction x of the total momentum of the nucleon.
The nucleon structure function, FN

2 (x), is given by

FN
2 (x) =

∑
α

e2αxfα(x), (22)

where eα is the electric charge of the corresponding quark
flavor. For notation convenience, we replace fα(x) by α(x)
in the following.

The chemical potentials µu and µd are used to normal-
ize the number of valence quarks of the nucleon, such that
for the proton we have, instead of (14),

∫ 1

0
[u(x) − ū(x)] dx = 2 ,

∫ 1

0

[
d(x) − d̄(x)

]
dx = 1 (23)

∫ 1

0
[s(x) − s̄(x)] dx = 0 . (24)

For the neutron, we should exchange the flavors u and d in
(23). µu, µd, and T are adjusted with three observables,
respectively given by the normalizations of the valence
quarks u and d [see (23)] and by the GSR [see (1)]. The
chemical potential corresponding to the strange quark is
zero in the nucleon case, as given by (24).

The temperature parameter T is determined by con-
sideration of the violation of the Gottfried sum rule [3],
which can be obtained from (1) [4]. Assuming SG = 0.24
as the experimental result, the “experimental” violation
of the GSR is given by

IGSR ≡ 3
2
SG − 1

2
=

∫ 1

0

(
ū(x) − d̄(x)

)
dx = −0.14 . (25)

The strengths of the confining potential in the Dirac equa-
tion, for the quarks u, d, and s, are fixed at T = 0 through
baryon masses which have zero instanton contribution; we
describe this in the following section.

4 Temperature effect and strangeness

Since we are working in a statistical thermal model, ob-
servables such as the particle masses will depend on a
temperature parameter, given in (15)–(17) by the thermal
masses. Other observables, e.g., the chemical potentials
and the Gottfried sum rule, will also depend on such a
temperature parameter. We consider such dependence in
the following.
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Table 2. The chemical potentials and thermal masses at differ-
ent temperatures, without instanton effects. All the quantities
are given in MeV

T µu µd Mu Md M∆

100 185 121 622.5 620 1866
110 145 85 657 650 1964
120 109 60 686 691 2063

Initially, in our first parametrization of the model, we
have not considered short-range effects, such as the small-
size instanton fluctuations [21], which can be responsible
for the N–∆ mass difference. In this way, the ground-state
energies for the quarks are adjusted to reproduce the Delta
isobar mass (a particle with no instanton contribution) at
T = 0, such that ε0 = 410 MeV. In Table 2, we present
the corresponding results for the chemical potentials and
the thermal masses in MeV. We observe that the chem-
ical potential decreases as the temperature and thermal
masses increase. In order to reproduce the GSR violation,
we need to increase the temperature. As we increase the
temperature, we excite more states from the vacuum; this
explains the large thermal masses we have2. The chemical
potential decreases in order to keep fixed the correspond-
ing normalization, given by (23) and (24).

4.1 Instanton effect

Next, observing that the effective potential does not con-
tain all the interactions of the quarks in the hadrons, we
consider the contribution of small-size instanton fluctu-
ations [21]. These interactions can be considered as the
main reason for the spin–spin splitting between hadronic
multiplets, such that the pseudoscalar octet loses about
one third of its mass as a result of this interaction. There
are also other contributions to the N–∆ splitting that we
have not included in the present model, e.g., the gluon
exchange corrections. As is shown in [21], the contribu-
tion for the splitting coming from gluon exchange is of
the order of 40 MeV. Therefore, the instanton contribu-
tion determines the main part of the N–∆ splitting in our
approach. When only the instanton contribution to the
splitting is considered, the mass of the nucleon becomes
higher than the observed one. However, for the purpose of
the present preliminary approach of the statistical quark
model, such a difference is not so relevant. We need to
keep in mind that the addition of gluon effects cannot be
avoided when one tries to reproduce the behavior of the
structure functions at very low x. The addition of such
effects, in a model that is an extension of the present one,
is being considered for a future work.

As the total instanton contribution to the nucleon mass
is −267 MeV at T = 0 [see (11)], the effective ground-
state energy of the quarks in the nucleon will be reduced

2 In this procedure, for a temperature of the order of 110
MeV, we have considered up to 46 levels of the energy spec-
trum, where at least 30 levels are effective to obtain a precision
of two digits in the GSR

Table 3. The chemical potentials and thermal masses at dif-
ferent temperatures, with instanton effects in the first energy
level taken into consideration. All quantities are given in MeV

T µu µd Mu Md MN

100 157 96 526 521 1574
110 125 70 576 568 1722
120 71 40 620 615 1857

Table 4. The violation of the Gottfried sum rule, given by
IGSR (25), with instanton contributions to the first energy level
taken into consideration

T (MeV) 100 110 120

IGSR −0.0827 −0.1586 −0.2394

to ε0 = 322 MeV. This state is predominant in the sums
given in (16) and (17), implying that the thermal masses
obtained in Table 2 must decrease correspondingly, as is
shown in Table 3.

By using the results shown in Tables 2 and 3 we can
adjust, in a consistent calculation, the temperature to ob-
tain the corresponding violation of the GSR, given in (25).

In Table 4, we verify how much the temperature affects
the results obtained for the violation of the GSR, in which
instanton contributions are included in the first energy
level. We can observe that the temperature is near to 110
MeV. In fact, to obtain IGSR = −0.14, we found that the
best choice for the temperature is 108 MeV.

In Fig. 1, we illustrate the model for the difference be-
tween the structure functions of the proton and neutron,
and we also include the corresponding absolute value of
the contribution coming from the sea quarks (dashed line).
Such a contribution is given by 2/3x(d̄− ū) . We adjusted
the temperature (T =108 MeV) using (1); and obtained
the chemical potentials (µu =135 MeV and µd =78 MeV)
by fitting (14). The results of our model are compared with
the experimental available ones. One can observe that the
model gives a reasonable fitting for such difference at x
higher than 0.4. The addition of gluon effects will be rel-
evant for lower x.

4.2 Strangeness

For the strange-quark content of the nucleon, the relevant
observables are given by [22]

η =
2

∫ 1
0 xs(x)dx∫ 1

0 x (u(x) + d(x)) dx
,

κ =
2

∫ 1
0 xs(x)dx∫ 1

0 x
(
ū(x) + d̄(x)

)
dx
. (26)

κ represents the ratio between the strange and nonstrange
quarks of the sea. With η/κ we obtain the ratio between
the nonstrange antiquarks and quarks in the nucleon:

η

κ
=

∫ 1
0

(
ū(x) + d̄(x)

)
xdx∫ 1

0 (u(x) + d(x))xdx
. (27)
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Table 5. The strangeness of the nucleon, given by κ, η and the ratio κ/η, are shown,
after adjustment of the violation of the GSR with the temperature used as a parameter.
The first two lines gives the best model fitting, for when the instanton contribution is
absent and when it is included. In the third line ∆I is the instanton contribution to the
second one. For the strangeness observables, the experimental values were obtained
from [14]. The quoted experimental result for IGSR corresponds to SG = 0.24, which
is close to the central value of the NMC data (1994) [4], given in (1)

T (MeV) IGSR η/κ η κ

No instanton 113 −0.1394 0.1580 0.1160 0.7280
With instanton 108 −0.1404 0.1570 0.0847 0.5360
∆I 108 −0.0421 0.0505 −0.0043 −0.2976
Experimental – −0.14 0.2075 0.099+0.009

−0.006 0.477+0.063
−0.053

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.04

0.08

0.12

0.16

0.20

F
2p

(x
) 

- 
F

2n
(x

)

Fig. 1. The difference of the structure functions for the proton
and neutron, F p

2 (x)−F n
2 (x), obtained by the model (solid line),

is compared with experimental results. Empty squares: from
NMC (1994) results [4] at Q2 = 4 GeV2; triangles: from [24],
in the range of 7 < Q2 < 170 GeV2; circles: from SLAC [25]
for 2 < Q2 < 20 GeV2; dashed line: the absolute value of the
antiquark contribution to this difference, given by 2/3(d̄ − ū)

In Table 5, we present our numerical values for the
strangeness given by (26) and (27), with the corresponding
values for the temperature parameter and the violation of
the GSR. The experimental data for the strangeness were
obtained from [14].

For IGSR, we consider the value given in (25) as the
experimental one. It was used to adjust approximately the
corresponding temperatures in our calculations. In our cal-
culations, as explained before, we have also adjusted the
chemical potentials to the rules given in (23) and (24).
In the line labeled “No instanton”, the best fitting was
done without consideration of instanton effects. In the line
labeled “With instanton”, the corresponding fitting was
done after consideration of the instanton effect. A com-
parison with the results given in Table 4 shows that one
can also adjust the temperature to a value near 110 MeV.

In the third line, we estimate the instanton contribution
(∆I) to the values obtained in the second line. Without
instanton contribution, we have already a reasonably good
result for the strangeness, as is shown in the first line of
Table 5. The results for η and κ were reduced when the
instanton contribution was considered (second line); this
improved the agreement with the given experimental val-
ues.

5 Conclusions

We have presented a thermal model with confining po-
tential, following a similar relativistic quark gas model to
that developed in [16]. In our approach, to generate the
quark levels, we used the scalar plus vector linear poten-
tial given in (3), in which two strength parameters are
used, in order to fix the ground state of the particles ∆
and Ω. Considering the current quark masses to be equal
to zero for the u and d quarks and 150 MeV for the quark
s, we obtained effective thermal masses for the constituent
quarks and for the hadrons by using a Fermi–Dirac dis-
tribution. The thermal mass for the hadron was defined
by a sum over the eigenstates of energy, as given in (15),
such that the observed baryon mass is reached in the limit
T → 0. The effective temperature in the model was fixed
to reproduce the violation of the Gottfried sum rule after
adjustment of the chemical potentials for u and d quarks.
Such chemical potentials were adjusted by normalization
of the number of valence quarks in the proton and neutron.
For the temperature, we obtained T = 108 MeV when we
considered the instanton effects to the first energy level,
as has been described in the previous sections. For the
chemical potentials, the values obtained were µu ≈ 135
MeV and µd ≈ 78 MeV. These results for the tempera-
ture and chemical potentials are consistent with the ones
obtained in [17] (T = 103 MeV, µu = 148 Mev, µd = 83.4
MeV). The small differences obtained between the two
approaches are due to the corresponding confining quark
models which were used, and to the addition of instanton
effects in the present approach.

One of the advantages of this approach is that the
Pauli blocking effect, suggested to partially explain the
asymmetry in the nucleon sea, is naturally incorporated
inside the model, with the quarks obeying Fermi–Dirac
statistics.
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The main new result obtained by the present quark
model was the strangeness content of the nucleon, repre-
sented by the observables η and κ, which are defined in
(26) and (27), as shown in Table 5. In the present work we
made the assumption that the strange quark, inside the
nucleon, feels the same average central potential as in the
Ω(1676) particle. Considering the results obtained by the
model for the observables η and κ, this naive idea looks to
be a good approach. We should note that the experimen-
tal numbers for the strangeness quoted in Table 5 were
extracted at relatively large Q2, and that in the present
stage, the model ignores QCD effects. In view of the fact
that qualitatively the model gives a good description of
such experimental data, one can interpret our results as
an evidence that gluonic effects and Q2 dependence are
mostly canceled when one takes the ratio of the quark
structure functions, as given by (26) and (27). In other
words, the high Q2 effect is roughly flavor-independent,
and the main effect in the quark structure functions can
be factorized. By taking into account Q2 dependence by
evolution, and having a better description of the quark
structure functions, one can verify the range of validity of
the above factorization hypothesis.

Another result obtained from the model is given by
the differences of the structure functions for the proton
and neutron, which are shown in Fig. 1. As is expected
in this kind of simplified quark model, the agreement of
the model is better for higher x when compared with the
available experimental data. The corresponding contribu-
tion of the asymmetry in the sea (d̄ − ū) is also presented
in Fig. 1. In a preliminary approach [26], it was observed
that the addition of gluon effects improves the agreement
of the results for lower values of x, particularly for the ra-
tio between the structure functions of proton and neutron.
Because in the present paper we are using a model where
the quarks are bound, one should not expect a close agree-
ment of the results for the structure functions; this point
has already been discussed in [27] and [17]: All bound
states dominated by a three-quark configuration when ap-
proaching a DIS regime produce a peak near x = 1/3.
However, considering the physical appeal of the model,
which incorporates the Pauli principle in a natural way,
and considering we have no free parameters to obtain the
results (for the strangeness content and the differences of
the structure functions), we can suggest it as a starting
model in the development of a more realistic description.
By performing the evolution to high Q2, we believe the
present results will be improved, as new parameters will
enter in order to describe the structure of the constituent
quark (convolution) and gluonic effects.
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